Topic

Fundamental Theorem of Indefinite Integrals

Topic Progress:

$$ \displaystyle \int{(ax+b)^n}dx = \dfrac{(ax+b)^{n+1}}{a(n+1)}+C $$

Practice Questions

Question 1

Find \( \displaystyle \int{(2x+1)^4}dx \).

Question 2

Find \( \displaystyle \int{(2x-1)^3}dx \).

Question 3

Find \( \displaystyle \int{\Big(\dfrac{x}{3}-1\Big)^5}dx \).

Question 4

Find \( \displaystyle \int{(4-3x)^6}dx \).

Question 5

Find \( \displaystyle \int{\dfrac{1}{(3x+1)^4}}dx \).

Question 6

Find \( \displaystyle \int{\frac{1}{(5x+4)^2}}dx \).

Question 7

Find \( \displaystyle \int{\dfrac{2}{5(4x-1)^3}}dx \).

Question 8

Find \( \displaystyle \int{\dfrac{4}{3(1-2x)^5}}dx \).

Question 9

Find \( \displaystyle \int{\sqrt{3x+2}}dx \).

Question 10

Find \( \displaystyle \int{\sqrt{1-2x}}dx \).

Question 11

Find \( \displaystyle \int{\sqrt{(4x+1)^5}}dx \).

Question 12

Find \( \displaystyle \int{\sqrt[3]{6x+1}}dx \).

Question 13

Find \( \displaystyle \int{\sqrt[4]{(2x-5)^3}}dx \).

Question 14

Find \( \displaystyle \int{\sqrt[3]{(2-3x)^4}}dx \).

Question 15

Find \( \displaystyle \int{\frac{1}{\sqrt{6x-1}}}dx \).

Question 16

Find \( \displaystyle \int{\dfrac{1}{\sqrt{4x-2}}}dx \).

Question 17

Find \( \displaystyle \int{\dfrac{1}{\sqrt[3]{1-3x}}}dx \).

Question 18

Find \( \displaystyle \int{\dfrac{6}{\sqrt{(4x+3)^3}}}dx \).

Question 19

Find \( \displaystyle \int{\dfrac{5}{2\sqrt[3]{(1-6x)^2}}}dx \).

MD5103