# Inequalities using Arithmetic Mean Geometric Mean

Arithmetic Mean of $a$ and $b$ is always greater than or equal to the Geometric Mean of $a$ and $b$, for all positive real numbers with with equality if and only if $a = b$. This is also called AM-GM (Arithmetic Mean Geometric Mean) inequality.
$\require{color}$
\begin{aligned} \frac{a + b}{2} \ge \sqrt{ab} \text{ or } a + b \ge 2 \sqrt{ab} \\ \end{aligned} \\
There are may ways to prove this Arithmetic Mean and Geometric Mean inequality.

### Proofs of Inequalities using Arithmetic Mean Geometric Mean

#### Proof by square roots

\begin{aligned} \displaystyle (\sqrt{a} – \sqrt{b})^2 &\ge 0 &\color{green} \text{square of anything is positive or zero} \\ a – 2 \sqrt{ab} + b &\ge 0 &\color{green} \text{expand} \\ \therefore a + b &\ge 2 \sqrt{ab} &\color{green} \text{got it!}\\ \end{aligned} \\

#### Proof by subtraction

\begin{aligned} (a + b)^2 – 4ab &= a^2 + 2ab + b^2 – 4ab \\ &= a^2 -2ab + b^2 \\ &= (a – b)^2 \ge 0 \\ (a + b)^2 – 4ab &\ge 0 \\ (a + b)^2 &\ge 4ab \\ \therefore a + b &\ge 2\sqrt{ab} \\ \end{aligned} \\

#### Proof by subtraction and square roots

\begin{aligned} a + b – 2 \sqrt{ab} &= \sqrt{a}^2 -2 \sqrt{a} \sqrt{b} + \sqrt{b}^2 \\ &= (\sqrt{a} – \sqrt{b})^2 \ge 0 \\ a + b – 2 \sqrt{ab} &\ge 0 \\ \therefore a + b &\ge 2 \sqrt{ab} \\ \end{aligned} \\

#### Sum of Reciprocal Fractions

Prove $\displaystyle \frac{x}{y} + \frac{y}{x} \ge 2$, where $x$ and $y$ are positive real numbers.

#### Product of sum and reciprocals

Prove $\displaystyle (x + y)\Big(\frac{1}{x} +\frac{1}{y}\Big) \ge 4$ , where $x$ and $y$ are positive real numbers.

#### Product of sum and reciprocals in three terms

Prove $\displaystyle (x + y + z)\Big(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \Big) \ge 9$ , where $x, y$ and $z$ are positive real numbers.

#### Quartic Roots

Prove $\displaystyle a + b + x + y \ge 4 \sqrt[4]{abxy}$, where $a,b,x,y \in \Re^{+}$.

#### Sum of Reciprocals

Prove $\displaystyle \frac{1}{x} + \frac{1}{y} \ge \frac{4}{x+y}$, where $x,y \in \Re^{+}$.

#### Sum of Square Reciprocals

Prove $\displaystyle\frac{1}{x^2} + \frac{1}{y^2} \ge \frac{8}{(x + y)^2}$, where $x,y \in \Re^{+}$.

#### Sum of Squares

Prove $x^2 + y^2 \ge \sqrt{2}$, if $x^4 + y^4 = 1$.

#### Sum of Exponentials

Prove $\displaystyle e^a + e^b \ge 2 e^{\frac{a+b}{2}}$.

#### Minimum Value of Exponentials

Find the minimum value of $e^{2x} + e^x + e^{-x} + e^{-2x}$.