# Logarithm Definition

A logarithm determines "$\textit{How many of this number do we multiply to get the number?}$".

The exponent that gives the power to which a base is raised to make a given number.
For example, $5^2=25$ indicates that the logarithm of $25$ to the base $5$ is $2$.
$$25=5^2 \Leftrightarrow 2=\log_{5}{25}$$
If $b=a^x,a \ne 1, a>0$, we say that $x$ is the logarithm in base $a$ of $b$, and then: $$b=a^x \Leftrightarrow x = \log_{a}{b}$$ It is read as "$b=a^x$" if and only if $x = \log_{a}{b}$.
It is a short way of writing:
If $b=a^x$ then $x=\log_{a}{b}$, and if $x=\log_{a}{b}$ then $b=a^x$.

These mean that $b=a^x$ and $x=\log_{a}{b}$ are $\textit{equivalent}$ or $\textit{interchangeable}$ statement.

### Example 1

Write $3^2=9$ in equivalent logarithmic statement.

### Example 2

Write $3=\log_{4}{64}$ in equivalent exponential logarithmic statement.

\begin{align} \require{color} y &= a^x \cdots (1) \\ x &= \log_{a}{y} \cdots (2) \\ \therefore \color{green}x &\color{green}= \color{green}\log_{a}{a^x} &\text{ by } (1) \text{ and } (2) \\ \end{align}

\begin{align} x &= a^y \cdots (3) \\ y &= \log_{a}{x} \cdots (4) \\ \therefore \color{green}x &\color{green}= \color{green}a^{\log_{a}{x}} &\text{ by } (3) \text{ and } (4) \\ \end{align}

### Example 3

Find $\log_{3}{81}$ without using a calculator.

### Example 4

Find $\log_{5}{0.2}$ without using a calculator.