Logarithms in Base 10

Many positive numbers can be easily written in the form $10^x$. $$ \begin{align} 10\ 000 &= 10^4 \\ 1000 &= 10^3 \\ 100 &= 10^2 \\ 10 &= 10^1 \\ 1 &= 10^0 \\ 0.1 &= 10^{-1} \\ 0.01 &= 10^{-2} \\ 0.001 &= 10^{-3} \\ \end{align}$$ All positive numbers can be written in the form $10^x$ by using logarithms in base $10$. $$y = 10^x \rightarrow \log_{10}{y} = x$$
Therefore the exponential forms (index forms) can be written in logarithmic forms; $$ \begin{align} 10\ 000 = 10^4 &\rightarrow \log_{10}{10\ 000} = 4 \\ 1000 = 10^3 &\rightarrow \log_{10}{1000} = 3 \\ 100 = 10^2 &\rightarrow \log_{10}{100} = 2 \\ 10 = 10^1 &\rightarrow \log_{10}{10} = 1 \\ 1 = 10^0 &\rightarrow \log_{10}{1} = 0 \\ 0.1 = 10^{-1} &\rightarrow \log_{10}{0.1} = -1 \\ 0.01 = 10^{-2} &\rightarrow \log_{10}{0.01} = -2 \\ 0.001 = 10^{-3} &\rightarrow \log_{10}{0.001} = -3 \\ \end{align}$$ These expressions can be re-written as follows; $$ \begin{align} \log_{10}{10\ 000} = 4 &\rightarrow \log_{10}{10^4} = 4 \\ \log_{10}{1000} = 3 &\rightarrow \log_{10}{10^3} = 3 \\ \log_{10}{100} = 2 &\rightarrow \log_{10}{10^2} = 2 \\ \log_{10}{10} = 1 &\rightarrow \log_{10}{10^1} = 1 \\ \log_{10}{1} = 0 &\rightarrow \log_{10}{10^0} = 0 \\ \log_{10}{0.1} = -1 &\rightarrow \log_{10}{10^{-1}} = -1 \\ \log_{10}{0.01} = -2 &\rightarrow \log_{10}{10^{-2}} = -2 \\ \log_{10}{0.001} = -3 &\rightarrow \log_{10}{10^{-3}} = -3 \\ \end{align}$$ These lead a pattern: $$\log_{10}{10^x} = x$$.
Often $\log_{10}{y}$ can be written in a simpler form $\log{y}$. $$\log_{10}{10^x} = \log{10^x} = x$$

Example 1

Without using a calculator, find $\log_{10}{100\ 000}$.

Example 2

Without using a calculator, find $\log_{10}{0.0001}$.

Example 3

Without using a calculator, find $\log_{10}{\sqrt{10}}$.

Example 4

Without using a calculator, find $\log_{10}{\sqrt[3]{100}}$.

Example 5

Write $8$ in the form $10^x$ where $x$ is correct to 4 significant figures.